many slides are from Svetlana Lazebnik @ UNC
Fitting

• Choose a parametric model (e.g., line, circle, ellipse, ...) to represent a set of features
Three questions

• What model represents this set of features best?
• Which of several model instances get which features?
• How many model instances are there?
Fitting: Issues

Line detection:
• Noise
• Extraneous data: clutter (outliers), multiple lines
• Missing data: occlusions
Fitting: Issues

• If we know which points belong to the line, how do we find the “optimal” line parameters?
 – Least squares

• What if there are outliers?
 – Robust fitting, RANSAC

• What if there are many lines?
 – Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
 – Model selection
Last time: Hough transform

• An accumulation buffer for the parameters is created (i.e., parametric space)
• Select image points
 – Vote for all possible parameters that contain this point
 – This vote is cast in the accumulation buffer
• Scan the acc buffer to find the parameters with the highest vote
 – Hypothesis that we have a “shape” with these parameters in the image
Example

Peak corresponding to this line using "normal" parameters
Homework 4
Detection of lane markers
Least squares line fitting

- line: \(y_i = a x_i + b \)
- Find \(a \) and \(b \) to minimize

\[
E = \sum_{i=1}^{n} (y_i - ax_i - b)^2
\]

\[
\frac{\partial E}{\partial a} = 0, \quad \frac{\partial E}{\partial b} = 0
\]

\[
\begin{bmatrix}
 n & \sum_{i=1}^{n} x_i \\
 \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix}
= \begin{bmatrix}
\sum_{i=1}^{n} y_i \\
\sum_{i=1}^{n} x_i y_i
\end{bmatrix}
\]

Normal equations: \(X^T XB = X^T Y \)
Total least squares

• Line: \(ax + by + c = 0 \)

• Perpendicular distance between a point \((u, v)\) and the line is \(|au + bv + c|\) if \(a^2 + b^2 = 1\)

• Minimize the sum of perpendicular distances

\[
E = \sum_{i=1}^{n} (ax_i + by_i + c)^2
\]

subject to \(a^2 + b^2 = 1\)
Total least squares

\[\frac{\partial E}{\partial c} = 0 \implies c = -a\bar{x} - b\bar{y} \]

\[\implies E = \sum_{i=1}^{n} (ax_i - a\bar{x} + by_i - b\bar{y})^2 + \lambda(a^2 + b^2 - 1) \]

\[\frac{\partial E}{\partial a} = 0, \frac{\partial E}{\partial b} = 0 \implies \begin{bmatrix} x^2 - \bar{x}\cdot\bar{x} & \bar{xy} - \bar{x}\cdot\bar{y} \\ \bar{xy} - \bar{x}\cdot\bar{y} & y^2 - \bar{y}\cdot\bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \lambda \begin{bmatrix} a \\ b \end{bmatrix} \]

\[X_B = \lambda B \]

Solution is the eigenvector of \(X \) with the smallest eigenvalue
Least squares for general curves

- We would like to minimize the sum of squared geometric distances between the data points and the curve (x_i, y_i)

\[d((x_i, y_i), C) \]
Least squares for conics

- Equation of a general conic:
 \[C(a, x) = a \cdot x = ax^2 + bxy + cy^2 + dx + ey + f = 0, \]
 \[a = [a, b, c, d, e, f], \]
 \[x = [x^2, xy, y^2, x, y, 1] \]
- Minimizing the geometric distance is non-linear even for a conic
- **Algebraic distance:** \(C(a, x) \)
- Algebraic distance minimization by linear least squares:

\[
\begin{bmatrix}
 x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\
 x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 x_n^2 & x_ny_n & y_n^2 & x_n & y_n & 1
\end{bmatrix} \begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e \\
 f
\end{bmatrix} = 0
\]
Robustness
Robustness
Fitting: Issues

• If we know which points belong to the line, how do we find the “optimal” line parameters?
 – Least squares

• What if there are outliers?
 – Robust fitting, RANSAC

• What if there are many lines?
 – Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
 – Model selection
Robust fitting

- General approach: minimize \(\sum_i \rho(r_i(x_i, \theta); \sigma) \)

\(r_i(x_i, \theta) \) – residual of ith point w.r.t. model parameters \(\theta \)

\(\rho \) – robust function with scale parameter \(\sigma \)

The robust function \(\rho \) behaves like squared distance for small values of the residual \(r \) but saturates for larger values of \(r \)

\[\rho = \frac{r^2}{r^2 + \sigma^2} \]
Choosing the scale: Just right
Choosing the scale: Too small
RANSAC

• Robust fitting can deal with a few outliers - what if we have very many?

• **Random sample consensus (RANSAC):** Very general framework for model fitting in the presence of outliers

• Outline
 – Choose a small subset of points uniformly at random
 – Fit a model to that subset
 – Find all remaining points that are “close” to the model and reject the rest as outliers
 – Do this many times and choose the best model

RANSAC for line fitting

Repeat N times:

- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers
Choosing the parameters

• Initial number of points s
 – Typically minimum number needed to fit the model

• Distance threshold t
 – Choose t so probability for inlier is p (e.g. 0.95)
 – Zero-mean Gaussian noise with std. dev. σ: $t^2 = 3.84\sigma^2$

• Number of samples N
 – Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

\[
\left(1 - (1-e)^s\right)^N = 1 - p
\]

\[
N = \log(1 - p) / \log\left(1-(1-e)^s\right)
\]

<table>
<thead>
<tr>
<th>s</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>
Adaptively determining the number of samples

• Outlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield $e=0.2$

• Adaptive procedure:
 – $N=\infty$, sample_count = 0
 – While $N>\text{sample_count}$
 • Choose a sample and count the number of inliers
 • Set $e = 1 - (\text{number of inliers})/(\text{total number of points})$
 • Recompute N from e:
 \[
 N = \frac{\log(1 - p)}{\log\left(1 - (1 - e)^s\right)}
 \]
 • Increment the sample_count by 1
RANSAC pros and cons

• **Pros**
 – Simple and general
 – Applicable to many different problems
 – Often works well in practice

• **Cons**
 – Lots of parameters to tune
 – Can’t always get a good initialization of the model based on the minimum number of samples
 – Sometimes too many iterations are required
 – Can fail for extremely low inlier ratios
 – We can often do better than brute-force sampling