Object Recognition and Template Matching

Template Matching

- A template is a small image (sub-image)

- The goal is to find occurrences of this template in a larger image

- That is, you want to find matches of this template in the image
Basic Approach

- For each Image coordinate \((i,j)\)
 - for the size of the template \(s,t\)
 - compute a pixel-wise metric between the image and the template
 - sum
 - next
 - record the similarity
- next

- A match is based on the closest similarity measurement at each \((i,j)\)
Similarity Criteria

• Correlation
 - The correlation response between two images \(f \) and \(t \) is defined as:

\[
c = \sum_{x,y} f(x, y)t(x, y)
\]

 - This is often called cross-correlation

Template Matching Using Correlation

• Assume a template \(T \) with \([2W, 2H]\)
 - The correlation response at each \(x,y \) is:

\[
c(x, y) = \sum_{k=-W}^{W} \sum_{l=-H}^{H} f(x+k, y+l)t(k,l)
\]

Pick the \(c(x,y) \) with the maximum response

[It is typical to ignore the boundaries where the template won’t fit]
Template Matching

Response Space $c(x,y)$ (using correlation)

Problems with Correlation

- If the image intensity varies with position, correlation can fail.
 - For example, the correlation between the template and an exactly matched region can be less than correlation between the template and a bright spot.

- The range of $c(x,y)$ is dependent on the size of the feature

- Correlation is not invariant to changes in image intensity
 - Such as lighting conditions
Normalized Correlation

- We can normalize for the effects of changing intensity and the template size

- We call this **Normalized Correlation**

\[
c = \frac{\sum_{x,y} [f(x, y) - \bar{f}][t(x, y) - \bar{t}]}{\left(\sum_{x,y} [f(x, y) - \bar{f}]^2 \sum_{x,y} [t(x, y) - \bar{t}]^2 \right)^{1/2}}
\]

Make sure you handle dividing by 0

Finding Matches

- Normalized correlation returns values with a maximum range of "1".

- Specify accepted matches with a threshold
 - Example
 - \(c(x,y) > 0.9 \) considered a match

- Note that you generally need to perform some type of Non-maximum suppression
 - Run a filter of a given window size
 - Find the max in that window, set other values to 0
Other Metrics

• Normalized Correlation is robust
 - It is one of the most commonly used template matching criteria when accuracy is important

• But, it is computationally expensive

• For speed, we often use other similarity metrics

Sum of the Squared Difference

• SSD

\[c(x, y) = \sum_{k=-W}^{W} \sum_{l=-H}^{H} [f(x+k, y+l) - t(k, l)]^2 \]

Note in this case, you look for the minimum response!
Sum of the Absolute Difference

- SAD

\[
c(x, y) = \sum_{k=-W}^{W} \sum_{l=-H}^{H} |f(x+k, y+l) - t(k, l)|
\]

Also, look for the minimum response!

This operation can be performed efficiently with integer math.

Example

Response Space \(c(x,y)\)

(using SAD)

A match is the minimum response
Template Matching

• Limitations
 - Templates are not scale or rotation invariant
 - Slight size or orientation variations can cause problems

• Often use several templates to represent one object
 - Different sizes
 - Rotations of the same template

• Note that template matching is an computationally expensive operation
 - Especially if you search the entire image
 - Or if you use several templates
 - However, it can be easily “parallelized”

Template Matching

• Basic tool for area-based stereo

• Basic tool for object tracking in video

• Basic tool for simple OCR

• Basic foundation for simple object recognition
Object Recognition

- We will discuss a simple form of object recognition
 - Appearance Based Recognition

- Assume we have images of several known objects
 - We call this our “Training Set”

- We are given a new image
 - We want to “recognize” (or classify) it based on our existing set of images

Example

Columbia University Image Library
Object Recognition

• Typical Problem

• You have a training set of images of \(N \) objects

• You are given a new image, \(F \)
 - \(F \) is an image of one of these \(N \) objects
 • Maybe at a slightly different view than the images in your training set
 - Can you determine which object \(F \) is?

Let's Start With Face Recognition

Database of faces [objects]

Given an “new” image, Can you tell who this is?

About the Training Set

- The training set generally has several images of the same “object” at slightly different views

- The more views, the more robust the training set
 - However, more views creates a larger training set!

Brute Force Approach to Face Recognition

- This is a template matching problem
 - The new “face” image is a template

- Compare the new face image against the database of images
 - Using Normalized Correlation, SSD, or SAD

 - For example: Let I_i be all of the existing faces
 - Let F be the new face
 - For each I_i
 - $c_i = |I_i - F|$ (SAD)

 - Hypothesis that the minimum c_i is the person
Example

• Database of 40 people
• 5 Images per person
 – We randomly choose 4 faces to compose our database
 – That is a set of 160 images
• 1 image per person that isn’t in the database
 – Find this face using the Brute force approach

• (The class example uses image of size 56x46 pixels. This is very small and only used for a demonstration. Typical image sizes would be 256x256 or higher)

Implementation

• Let Ii (training images) be written as a vector
• Form a matrix X from these vectors

\[
X = \begin{bmatrix}
I_1 & I_2 & \ldots & I_i & \ldots & I_{n-1} & I_n
\end{bmatrix}
\]

X dimensions: \(W \times H \) of image \(* number_of_images \)
Implementation

- Let F (new face) also be written as a vector

- Compute the "distance" of F to each I_i
 - for $i = 1$ to n
 - $s = |F - I_i|$

- Closest I_i (min s) is hypothesised to be the "match"

- In class example:
 - X matrix is: 2576×160 elements
 - To compare F with all I_i
 - Brute force approach takes roughly 423,555 integer operations using SAD

Example

<table>
<thead>
<tr>
<th>Training Set</th>
<th>New Face</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAD Diff Image (Computed in Vector Form)</td>
<td></td>
</tr>
<tr>
<td>SAD result</td>
<td>50765</td>
</tr>
</tbody>
</table>
Brute Force

- Computationally Expensive
- Requires a huge amount of memory
- Not very practical

We need a more compact representation

- We have a collection of faces
 - Face images are highly correlated
 - They share many of the same spatial characteristics
 - Face, Nose, Eyes

- We should be able to describe these images using a more compact representation
Compact Representation

- Images of faces are not randomly distributed
- We can apply Principal Component Analysis (PCA)
 - PCA finds the best vectors that account for the distribution of face images within the entire space
- Each image can be described as a linear combination of these principal components
- The powerful feature is that we can approximate this space with only a few of the principal components
- Seminal Paper: **Face Recognition Using Eigenfaces**
 - 1991, Mathew A. Turk and Alex. P. Pentland (MIT)

Eigen-Face Decomposition

- Idea
 - Find the mean face of the training set
 - Subtract the mean from all images
 - Now each image encodes its variation from the mean
 - Compute a covariance matrix of all the images
 - Imagine that this is encoding the "spread" of the variation for each pixel (in the entire image set)
 - Compute the principal components for the covariance matrix (eigen-vectors of the covariance space)
 - Parameterize each face in terms of principal components
Eigen-Face Decomposition

Compute Mean Image

\[\hat{\mathbf{I}} = \bar{\mathbf{I}} \]

Compose \(\hat{\mathbf{X}} \) of

\[\hat{\mathbf{I}}_i = (\mathbf{I}_i - \bar{\mathbf{I}}) \]

Eigen-Face Decomposition

- Compute the covariance matrix
 \[\mathbf{C} = \hat{\mathbf{X}} \hat{\mathbf{X}}^T \]
 - (note this is a huge matrix, \(\text{size}_\text{of}_\text{image} \times \text{size}_\text{of}_\text{image} \))

- Perform Eigen-decomposition on \(\mathbf{C} \)
 - This gives us back a set of eigen vectors \((\mathbf{u}_i) \)
 - These are the principal components of \(\mathbf{C} \)
The Eigen-Faces

• These eigenvector form what Pentland called "eigen-faces"

First 5 Eigen Faces
(From our training set)

Parameterize faces as Eigen-faces

• All faces in our training set can be described as a linear combination of the eigen-faces

• The trick is, we can approximate our face using only a few eigen-vectors

\[P_i = U_k^T \ast (I_i - \bar{I}) \]

Where \(k \ll \text{Size of Image} \)
\((k = 20) \)
Eigen-face Representation

Comparing with Eigen faces

- We build a new representation of our training set
- For each I_i in our training set of N images
- Compute: $P_i = U_k^T * (I_i - I)$
- Create a new matrix

$$P_{\text{param}} = \begin{bmatrix} P_1 & P_2 & P_3 & \ldots & P_i & \ldots & P_{n-1} & P_n \end{bmatrix}$$

Only has k rows!
Recognition using Eigen-Faces

- Find a match using the parameterization coefficients of P_{aram}

- So, given a new face F
 - Parameterize it in Eigenspace
 - $P_f = U_k^\top * (I_i - I)$
 - Find the closest P_i using SAD
 - $\min | P_i - P_f |$
 - Hypothesis image corresponding to P_i is our match!

EigenFaces Performance

- **Pixel Space**
 - In class example:
 - X matrix is: 2576×160 elements
 - Brute force approach takes roughly 423,555 integer operations using SAD

- **Eigen Space**
 - In class example
 - Assume we have already calculated U and P_{aram}
 - $P_{\text{aram}} = 20 \times 160$ elements
 - Search approach
 - 51,520 multiples to convert our image to eigen-space
 - roughly 3200 integer operations to find a match SAD !!
Eigenspace Representation

• Requires significant pre-processing of space
• Greatly reduces the amount of memory needed
• Greatly reduces the “matching” speed
• Widely accepted approach

Extension to Generalized Object Recognition

• Build several eigenspaces using several training sets (one eigenspace for each set)

• Parameterize new image into these spaces
 - Find the closest match in all spaces
 - Find the closest space
Pose Recognition

- Industrial Imaging Automation

- Take a training set of an images at difference positions
 - Build an eigenspace of the training set

- Given an a new image
 - Find its closest match in the space
 - this is its "pose"

Draw backs to Eigenspaces

- Computationally Expensive

- Images have to be "registered"
 - Same size, roughly same background

- The choice of "K" affects the accuracy of recognition

- Static representation
 - If you want to add a new object (person)
 - You have to rebuild the eigenspace

- Starts to break down when there are too many objects
 - You begin to get a random distribution
Summary

- Template Matching
 - Similarity Criteria
 - Correlation, Normalized Correlation
 - SSD and SAD
- Object Recognition
 - Appearance Based
 - PCA (Principal Component Analysis)
 - Eigen-space representation
 - Eigen-faces

Active Research Area

- Not too much for template matching
- Object Recognition
 - Selected Feature Based Eigen Decomp
Active Research Area

- *Computing Eigenspaces*
 - *Optimal Eigenspaces*
 - *Incremental Eigenspaces*

- *Face Recognition*
 - Training set is important
 - Fake training images with view morphing
 - *Compressed Domain Integration*

- *Eigenspace research*
 - In math and computer vision
 - Very active area