Representation and Description

- After Segmentation
 - We need to represent (or describe) the segmented region
 - Representation is used for further processing
 - Often desire a compact representation
 - That describes the object itself
 - Not necessarily its relation to the original image
 - i.e., position, orientation, etc.
- Description
 - Provide useful descriptions of the region
 - Can be used for comparison, selection, etc
Some Desirable Features

- Representations/Descriptions should be invariant:
 - Translation
 - Rotation
 - Scale
- Similar regions should have the same description
 - regardless of their position or orientation in the image
- Note: this isn’t always possible
 - But it is something to keep in mind
Representation Schemes

- Generally two approaches
- **Boundary Characteristics**
 - Represent region by external characteristics (i.e., the boundary)

- **Internal Characteristics**
 - Represent region by internal characteristics

Chain Codes

- Chain codes are used to represent a boundary
 - Uses a logically connected sequence of straight-line segments
 - The line segments specify length and direction

- Direction coded using a number scheme
 - Based on N_4 or N_8 connectivity
Chain Codes

• Direction scheme

Chain Coding

• Digital Images
 - Pixels form an equally spaced grid in x and y direction
 - Chain coding can be created by following a boundary in some direction (say clockwise)
 - assigning a direction to the segments connecting every pair of pixels
 - assumes a 1-pixel wide boundary
Chain Coding

- Translation invariant
 - Note that this is different than a chain of \((x,y)\) coordinates
 - We are encoding the boundary itself

- Codes are sensitive to noise
 - If your boundary has some noise, this will show up in the chain code
 - One solution
 - Resample using a larger grid spacing
 - Also provides a more compact representation
Chain Code in Practice

- Chain Code depends on the starting point

- We can normalize the chain code to address this problem
 - Assume the chain is a circular sequence
 - (given a chain of 1 to N codes ; N+1 = 1)
 - Redefine the starting point such that we generate an integer of smallest magnitude
Chain Code in Practice

• Chain code depend on orientation
 - a rotation results in a different chain code
• One solution
 - Use the “first difference” of the chain code instead of the code itself
• The difference is obtained by simply counting (counter-clockwise) the number of directions that separate two adjacent elements
Difference Coding

You can normalize the difference code too.

Chain Coding

• Not scale invariant
 - You can provide several chain codes of the same object at difference “resolutions”

• While difference coding helps, it does not make a chain code completely invariant to rotation
 - Image digitization and noise can cause problems
 - Nonetheless, it is a fairly common encoding scheme
Polygonal Approximations

• Represent the boundary as a polygonal structure
 - Since the region is of discrete points
 • We can create an exact representation
 • Simply connect each pixel center

• However, we often want to reduce the exact representation by providing a more compact “approximation”

Polygonal Approximation Example

(a) (b)
Polygonal Approximation

• Challenge
 - Determine which points on the boundary to use

• One technique is *segment splitting*
 - Start with a line between the two farthest points on the boundary
 - Find the maximum perpendicular distance from the boundary to this line
 - sub-divide region (repeat)

Segment Splitting

(a) [Diagram of a polygon]
(b) [Diagram showing segment splitting]
(c) [Diagram showing sub-divide]
(d) [Final polygon]
Signatures

• A signature is a 1-D function used to describe a region
 - Often used to describe a 2-D boundary
 - The signature is often unique for a region
 • We can distinguish the region by its signature

• One common technique
 - Use the distance from the centroid of the region to the boundary as a function of angle
 - \(s(\phi) = d \)

Signature Example

![Signature Example Graphs](image-url)
Signatures

- Are not invariant to scale
 - Scale results in a signature with greater magnitude
 - We can normalize the magnitude
 - (by min and max magnitudes)
- Signature depends on starting point
 - This means they are not invariant to rotation
 - Solution, pick the *same* starting point (if possible)
 - find the farthest away point, start there
 - this should be rotation invariant

Boundary Segments

- Idea:
 - Decompose the boundary into segments
 - Select key features on the boundary
 - Reduces the overall boundary complexity
Convex Deficiency

• Convex Hull, \(H \), of an arbitrary set, \(S \), is the smallest set containing \(S \)

• \(H \) minus \(S \) (\(H-S \))
 - Is called the \textit{convex deficiency}

• We can use the convex deficiency to mark features
 - Follow the contour of \(S \) and mark points that transitions into or out of the convex deficiency

Example

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example.png}
\caption{(a) A region \((S)\) and its convex deficiency (shaded); (b) partitioned boundary.}
\end{figure}
Using Convex Hull and its Deficiency

• This data can be used to describe the region
 - Number of pixels in convex deficiency
 - Number of components in convex deficiency
 - Ratio lengths of the transition points
 - so on

Skeleton of a Region

• The skeleton of a region may be defined via the Medial Axis Transformation (MAT)

• The MAT of a region R with border B is as follows
 - For each point p in R
 • we find p's closest neighbor in B
 • If p has more than one such neighbor, it is said to belong to the medial axis

• Note: This definition depends on how we defined our distance measure (closest)
 • Generally euclidean distance, but not a restriction

Medial Axis Transformation

- **MAT Algorithm**
 - **Proper Algorithm**
 - For every point P in the region
 - Compute the distance of P to all boundary points
 - If P has two or more equal minimums
 - It is part of the medial axis
 - Otherwise remove this point
 - This is very compute intensive . . .
Thinning Algorithm for approximating the MAT

• 2-pass approach
 - Assume foreground pixels = "1"
 - Background = "0"
 - Define a contour point to be any point
 • that has at least one N_8 neighbor valued 0

• Consider this arrangement for the following algorithm:

```
p3  p6  p7
p4  p1  p8
p3  p2  p9
```

Thinning Algorithm
(Non-MM algorithm)

• 1st pass
 - Flag a contour point p for deletion if the following conditions are satisfied:
 (a) \(2 \leq N(p_1) \leq 6\)
 (b) \(S(p_1) = 1\)
 (c) \(p_2 \cdot p_4 \cdot p_6 = 0\)
 (d) \(p_4 \cdot p_6 \cdot p_8 = 0\)
 - \(N(p_1)\) is the number of nonzero neighbors of \(p_1\)
 - \(S(p_1)\) is the number of 0-1 transitions in the ordered sequence of \(p_2, p_3, \ldots, p_8, p_9, p_2\)

• If (a) – (d) are not violated, the point is marked for deletion
 - Points are not deleted until the end of the pass
 - This way the data stays intact until the pass is complete
Thinning Algorithm
(Non-MM algorithm)

• 2nd pass
 - Conditions (a) and (b) are the same as the 1st pass
 - (c) and (d) are different [call these (c') and (d')]:

 \[(c') \quad p_2 * p_4 * p_8 = 0\]
 \[(d') \quad p_2 * p_6 * p_8 = 0\]

• Delete all points that are flagged from the 2nd pass

• Repeat this procedure until the image converges
 - IE, until you cannot remove any more pixels

Thinning Algorithm

• Algorithm info:
 - if (a) is violated, this means this point is an “end-point”

 - (b) is violated when p1 is on a stroke 1 pixel thick

 - (c) and (d) are satisfied if
 - (p4 = 0 or p6 = 0) or (p2 = 0 and p8 = 0)

 - (c') and (d') are satisfied if
 - (p2 = 0 or p8 = 0) or (p4 = 0 and p6 = 0)
Boundary Descriptors

• Length of the contour
 - Simply count the number of pixels along the border
 - You may consider diagonally connected pixels to count as $\sqrt{2}$

• Diameter of the boundary B
 - $\text{Diam}(B) = \max[D(p_i,p_j)]$
 - this is the major axis of the region
Boundary Descriptors

- **Curvature**
 - Rate of change of the slope

- **Bounding Box**
 - Smallest rectangle (aligned with the image axis) that can bound the region

- **Shape number**
 - compute the chain code difference
 - re-order this to create the minimum integer
 - this is called the shape number

Shape Number Example

- **Order 4**
 - Chain code: 0 3 2 1
 - Difference: 3 3 3 3
 - Shape no.: 3 3 3 3

- **Order 6**
 - Chain code: 0 0 3 3 2 2 1 1
 - Difference: 3 0 3 0 3 0 3 0
 - Shape no.: 0 3 0 3 3 0 3

- **Order 8**
 - Chain code: 0 0 3 3 2 2 1 1 0 0 3 3 2 2 1 1
 - Difference: 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3
 - Shape no.: 0 3 0 3 3 0 3

- **Order 9**
 - Chain code: 0 3 0 3 3 3 3 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3
 - Difference: 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3
 - Shape no.: 0 0 0 3 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3
Shape Number

Compute the shape number using a 2D grid aligned to the object.

Fourier Descriptors

- Consider an N-point digital boundary in the xy plane
- This forms a coordinate pairs $(x_0, y_0), (x_1, y_2), \ldots, (x_{n-1}, y_{n-1})$
- We can consider this as two vectors
 - $x(k) = x_k$
 - $y(k) = y_k$
- Furthermore
 - We could consider this a complex number
 - $s(k) = x(k) + jy(k)$ where $j = \sqrt{-1}$
Fourier Descriptors

- Using the vector $s(k)$
- Compute the 1-D Discrete Fourier Transform
 \[a(u) = \frac{1}{N} \sum_{k=0}^{N-1} s(k) e^{-j2\pi mk/N} \]
- $a(u)$ is called the Fourier Descriptors of the region
- Note, that we can compute our original $s(k)$ by:
 \[s(k) = \sum_{k=0}^{N-1} a(u) e^{j2\pi mk/N} \]
Fourier Descriptors

- Suppose, that instead of using all the $a(u)$'s, only the first M coefficients are used. This is equivalent to setting $a(u) = 0$ for $u > M-1$.

- This is a more compact representation

- This procedure is also similar to a high-pass filter

- Now we can reconstruct the resulting $s'(k)$ using $a'(u)$

FD Example
Fourier Descriptors

- We only need a few descriptors to capture the gross shape of the boundary
- We can compare low-order coefficients between shapes to see how similar they are

Regional Descriptors

- **Area** of the region
 - Number of pixels in the region
- **Perimeter**
 - Length of its boundary
- **Compactness**
 - \((\text{perimeter}^2)/\text{area}\)
 - Compactness is invariant to translation, rotation, and scale
 - It is minimal for a disk-shaped region
Regional Descriptors

- The previously mentioned regional descriptors are often used with “blob” detection algorithms
 - You can select or delete blobs based on these descriptors
 - Especially “area” and compactness
 - For example, consider that you are looking for circles with radius of 10 pixels

Topological Descriptors

- Topology
 - The study of properties of a figure that are unaffected by any deformation
 - Assuming no tearing or joining
Topological Descriptors

- Count the connected components in a region

- Euler number, E, is a nice descriptor
 - \(E = C - H \)
 - where \(C \) is the number of connected components
 - \(H \) is the number of holes

Euler Number = 0 Euler Number = -1
Representation and Description

- This lecture introduces some basic approaches to represent or describe regions

- Such operations are between early vision and higher analysis
 - These representation/descriptions are used by higher-level operators

- Matching descriptions/representation can be tricky

- Often use pattern recognition techniques

Summary

- Representation
 - Boundary-based
 - chain code, shape number
 - polygon approximation
 - signatures
 - Fourier descriptors
 - Boundary segments
 - Skeletons
 - Region-based
 - Area, perimeter
 - Compactness
 - Topological descriptors